—— 汽车产业链供需平台 ——
下载盖世APP

首页 > 资讯 > 国际 > 密歇根大学开发新系统 大大缩减自动驾驶汽

密歇根大学开发新系统 大大缩减自动驾驶汽车测试时间和成本

盖世汽车 刘丽婷 2023-03-23 19:57:57
分享

盖世汽车讯 自动驾驶汽车(AV)是未来交通的重要组成部分,然而与安全测试相关的成本和时间阻碍了对真正自动驾驶汽车的推动。据外媒报道,密歇根大学开发的新系统表明,人工智能可以将所需的测试里程减少99.99%。

研究人员.jpg

图片来源:密歇根大学

凭借该系统,汽车制造商可能能够更快地验证自动驾驶汽车技术是否可以挽救生命并减少撞车事故。在仿真环境中,由人工智能训练的车辆执行危险的操作,迫使AV做出决策,而这些决策驾驶员通常很少遇到,但能够更好地训练车辆。而真实世界的测试车辆要反复遇到这种情况进行数据收集,需要行驶数亿至数千亿英里。

密歇根大学土木工程教授、Mcity和互联和自动化交通(Connected and Automated Transportation)中心主任Henry Liu表示:“安全关键事件——事故或未遂事故——在现实世界中非常罕见,而且自动驾驶汽车通常很难处理这些事件。”

密歇根大学的研究人员将这个问题称为“罕见的诅咒”,他们通过从包含罕见的安全关键事件的真实交通数据中学习来解决这个问题。在模拟城市和高速公路驾驶的测试跑道上进行的测试表明,经过AI训练的虚拟车辆可以将测试过程加快数千倍。

Liu表示:“我们使用的AV测试车辆是真实的,但我们创建了一个混合现实测试环境。背景车辆是虚拟的,这使我们能够训练它们创建在路上很少发生的具有挑战性的场景。”

密歇根大学的团队使用一种方法来训练背景车辆,该方法从仿真中使用的驾驶数据中去除非安全关键信息。基本上,它消除了其他驾驶员和行人负责任的、预期内的行为,但保留了需要采取行动的危险时刻,例如另一个驾驶员闯红灯。

通过仅使用安全关键数据来训练做出机动决策的神经网络,测试车辆可以在更短的时间内遇到更多这些罕见事件,从而降低测试成本。

清华大学自动化系助理教授、密歇根大学交通研究所前助理研究员Shuo Feng表示:“密集强化学习将释放人工智能的潜力,用于验证自动驾驶汽车、医疗机器人和航空航天系统等安全关键型自主系统的智能。它还通过利用基于AI的测试代理打开了加速安全关键自动驾驶系统培训的大门,从而使测试和培训之间建立共生关系,进而加速这两个领域的发展。”

测试是在美国安阿伯市(Ann Arbor)的Mcity城市环境以及伊普西兰蒂(Ypsilanti)美国交通中心(American Center for Mobility)的高速公路测试跑道上进行的。

支持Mcity仿真的真实世界数据集是从安阿伯市和底特律的智能十字路口收集的,更多的十字路口有待配备。每个十字路口都装有隐私保护传感器,以捕捉和分类每个道路使用者,识别其速度和方向。

关注我们更多服务平台

添加社区公众号、小程序, APP, 随时随地云办公尽在掌握

联系我们
盖世汽车社区 盖世汽车中文资讯 盖世汽车会议 盖世汽车研究院 盖世大学堂 Automotive News Global Auto Sources 友情链接 Copyright@2007-2022 All Right Reserved.盖世汽车版权所有
增值电信业务经营许可证 沪B2-2007118 沪ICP备07023350号 沪公网安备 31011402009699号 未经授权禁止复制或建立影像,否则将追究法律责任。